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Atomic diffusion, step relaxation, and step fluctuations

B. Blagojevićand P. M. Duxbury
Department of Physics and Astronomy and Center for Fundamental Materials Research, Michigan State University,

East Lansing, Michigan 48824-1116
~Received 8 February 1999!

We show that the dynamics of thepair correlation functionin a step train can pinpoint the dominant
relaxation mechanism occurring at a crystal surface. Evaporation-condensation and step-edge diffusion do not
produce dynamical correlations between neighboring steps, while terrace diffusion may lead to correlations
which fall off like a power law with distance and which are peaked at a characteristic time. We derive these
results within a ‘‘real space’’ Langevin formalism which is based on diffusion kernels which are different for
each mass transport process. We validate this formalism by reproducing the step fluctuation autocorrelation
function. We then derive results on the pair correlation between different steps. Results for solvable limiting
cases are summarized in Tables I and II of the paper. As an intermediate step in the analysis we also find
expressions for the relaxation timetpq of a mode of wave numberq along the steps and wave numberp
perpendicular to the steps, which we also discuss and compare with prior work.@S1063-651X~99!06907-X#

PACS number~s!: 05.40.2a, 68.35.Bs, 68.35.Ja
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I. INTRODUCTION

Steps are the most fundamental extended defects on
tal surfaces. Their dynamics mediate the annealing of cry
surfaces, the growth of single crystals, and many other
face processes@1#. Step dynamics are in turn mediated b
atom motion, usually either evaporation and condensa
from a vapor, diffusion across terraces or facets, or by di
sion along step edges. The high resolution provided by sc
ning tunneling microscopy~STM! and reflection electron mi
croscopy ~REM! is providing atomic scale images o
stochastic step fluctuations@2–7#. Understanding of these
data requires a quantitative analysis of step fluctuation
terms of the atomic processes producing them@8–13#. Such
theory, in combination with high quality step fluctuatio
data, provides a unique method for determining the domin
modes of mass transport across surfaces, and for estim
the energy barriers which impede the various atomic p
cesses contributing to them. A complementary probe
atomic diffusion processes is the study of the decay of s
cially prepared surface gratings, which in the small slo
limit are described by a closely related theory@14,15#.

Current measurements and theory concentrate on the
tuations of a step belonging to a step train,G(t). A simple
physical interpretation ofG(t) is the mean square distance
point on a step diffuses as a function of time. At very sh
times the motion is often diffusive@G(t);t#, but very
quickly the motion becomes subdiffuse due to the fact tha
point on a step edge is connected to other points on the
edge and hence its motion is impeded. The exponent of
subdiffuse motion is related to the dominant mode of atom
transport, and the prefactors are related to the energy b
ers. The analysis ofG(t), however, is often ambiguous as i
behavior is quite similar for different atomic diffusio
mechanisms@9,11,16,13#.

Here we generalize the analysis of step fluctuation co
lations by studying thex dependence of correlations on th
same step@i.e., G(x,t)#, and more importantly by analyzin
PRE 601063-651X/99/60~2!/1279~13!/$15.00
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the pair correlation functionbetween two stepsCk(x,t).
Ck(x,t) is an averaged product of the fluctuations of two s
positions separated by distancex parallel to the step edge an
located k steps apart. In order to calculateCk(x,t) and
G(x,t), we first calculate the relaxation timetpq for steps
which are modulated along the steps~with wave numberq),
and perpendicular to the steps~with wave numberp). By
summing over all modes, with the correct matrix elemen
we then deriveCk(x,t) andG(x,t). CkÞ0(x,t) is identically
zero for the cases of evaporation-condensation and step-
diffusion. In contrast,CkÞ0(x,t) is finite and quite large in
the case of terrace diffusion. This means that measureme
a finite value forCkÞ0(x,t) implies that terrace diffusion is
important. SinceG(t) quantifies the cumulative effect ofall
mass transport mechanisms, by combining the results o
G(t) andCkÞ0(x,t) it is then possible to determine the rel
tive importance of terrace diffusion as compared to the ot
types of surface mass transport.

Our calculations use a real space Langevin formali
which provides a nice physical picture of the diffusion pr
cesses contributing to mass transport on stepped surfa
and also relates the sticking coefficients and kinetic para
eters more directly to step edge and terrace energy barr
A preliminary discussion of this formalism and results f
G(0,t) have appeared as a conference proceedings@11#.

The paper is arranged as follows. Section II contains
real space formulation of step dynamics, with the key eq
tions being Eq.~17! for the relaxation timetpq and Eq.~24!
for the correlation functionCk(x,t). Section III contains an
analysis ofCk(x,t) andG(x,t) in a variety of time regimes.
This section can be skipped by those uninterested in the
tailed analysis. Section IV treats cases of physical interes
particular evaporation-condensation, step-edge diffusion
terrace diffusion. Analytic results forG(0,t) andCk(0,t) for
solvable limiting cases are summarized in Tables I and
respectively. Examples illustrating some of the more int
esting crossovers between these limiting cases are illustr
in Figs. 3 and 4. Section V contains a brief conclusion.
1279 © 1999 The American Physical Society
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TABLE I. Limiting behaviors forG(0,t).

Mass transport mechanism Time regime G(0,t)

Evaporation-condensation~EC! t˜0 ;t
0!t!ts

ST

VSa'

ps̃
D1/2S t

tEC
D 1/2

t@ts
ST

LV

12s̃
S 12

6

p2 e2t/ts
ECD

Step-edge diffusion~SE! t˜0 ;t
0!t!ts

SE
G~

3
4!

p SV5ai

s̃3 D1/4S t

tSE
D 1/4

t@ts
SE

LV

12s̃
S 12

6

p2 e2t/ts
SED

Terrace diffusion 1 (T1) t˜0 ;t
d˜` 0!t!t1

T1

Va'SaU1aL

ps̃
D1/2S t

tTD
D 1/2

~isolated step! t1
T1!t!t2

T1
VG~

2
3!

p Sa'
2

s̃2D1/3S t

tTD
D 1/3

t2
T1!t!ts

T1
VG~

2
3!

p S2a'
2

s̃2 D1/3S t

tTD
D 1/3

t@ts
T1

L

12s̃
S 12

6

p2 e2t/ts
T1D

Terrace diffusion 2 (T2) t!t1
T2 as for isolated step (T1)

d finite, aU50 or aL50 t1
T2!t!ts

T2
VG~

3
4!

p Sda'
2

s̃3 D1/4S t

tTD
D 1/4

~e.g., Schwoebel barrier5`) t@ts
T2

L

12s̃
S 12

6

p2 e2t/ts
T2D

Terrace diffusion 3 (T3) t!t1
T3 as for isolated step~T1!

d finite, aU,LÞ0 t1
T3!t!ts

T3

4Va'S 1

p3s̃~d1d0!
D1/2S t

tTD
D 1/2

t@ts
T3

LV

12s̃
H 12

3L

2p3S d1d0

pa'
2 s̃

D 1/2S t

tTD
D 21/2

e2(2p/L)4s̃a'
2 dt/tTDJ
-
on
ps

m
ad
qu

-

t

II. MODEL

Consider a train ofN steps, all with lengthL ~see Fig. 1!.
We number the steps withk51,2, . . . ,N, and assume peri
odic boundary conditions both along the step train and al
each step~this simplifies the analysis and is typical of ste
away from the edges of a finite step train!. Let hk(x,t) de-
scribe the random motion of thekth step in the train about its
center of mass, which is assumed to befixed— there are no
‘‘direct’’ interaction terms to produce center of mass dyna
ics. The average distance between centers of mass of
cent steps is the same everywhere on the surface and e
d.
g

-
ja-
als

Let us define the equilibrium (t!t1˜`) correlation
functions

G~x,t !5 1
2 ^@hk1

~x11x,t11t !2hk1
~x1 ,t1!#2& ~1!

and

Ck~x,t !5^hk11k~x11x,t11t !hk1
~x1 ,t1!&. ~2!

G(x,t) measures fluctuations, whileCk(x,t) measures corre
lations. Because of the periodic boundaries,G(x,t) and
Ck(x,t) do not depend onx1 andk1. By squaring the bracke
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TABLE II. Limiting behaviors forCkÞ0(0,t).

Mass transport mechanism Time regime CkÞ0(t)

Terrace diffusion 3 (T3) t˜0 Vd

2ps̃k!~2k21!
S 4s̃a'

2

~d1d0!d
2DkS t

tTD
D k

d finite, aU,LÞ0 0!t!ts
T3

4V

4k221 S a'
2

~d1d0!p
3s̃
D1/2S t

tTD
D 1/2

t@ts
T3

VL2

8s̃p3 Sd1d0

pa'
2 s̃

D1/2S t

tTD
D 21/2

e2(2p/L)4s̃a'
2 d(t/tTD)
ly

dge

r-
We
ng a
in Eq. ~1! and taking an average of each term individual
we find that these two functions are related as

G~x,t !5C0~0,0!2C0~x,t !, ~3!

whereC0(0,0) is the squared equilibrium width of a step.
The local chemical potential,mk(x,t), which we associate

with the kth step, is

mk~x,t !52VS̃¹2hk~x,t !. ~4!
, It is derived using

Fk'
S̃

2E2L/2

L/2

~¹hk!
2dx ~5!

as the energy cost of Gaussian fluctuations of the step e
about its mean position@17#. V5a'ai is the area of a sur-
face element, witha' andai being the lattice spacings pe
pendicular and parallel to the step edge, respectively.
describe the time dependent fluctuations of the steps usi
coupled set of Langevin equations,
s
ass may

all discuss

e
ed by

s at
we

for the

,

]hk~x,t !

]t
5

Gh

kBT H 1

2
Jk21,k~x,t !1Jk,k~x,t !1

1

2
Jk11,k~x,t !J 1hk~x,t !. ~6!

Jk,k describes the healing of the step fluctuation due to mass transport along a step, whileJk21,k andJk11,k describe the healing
of such fluctuations due to mass transport between stepk and stepsk21 andk11, respectively. The healing of fluctuation
is driven by differences in the step chemical potential, and the rate of that healing is controlled by the rate at which m
be transferred in order to heal unfavorable chemical potential differences. The rate

Gh5
a'

th
, ~7!

whereth is the time between detachment events, depends on the energy barriers which exist at the step edges. We sh
this further in the context of specific types of mass transport.

Considering first healing due to mass transport along a step edge, the integralJk,k is given by

Jk,k~x,t !5E
0

L/2

P0~ l !$mk~x1 l ,t !22mk~x,t !1mk~x2 l ,t !%dl, ~8!

where the chemical potential difference between sites separated by distancel is contained in the curly brackets, and th
‘‘mobility’’ is described by P0( l ). This mobility is the probability that an atom is exchanged between two sites separat
distancel along thex axis and located on the same step edge. In the case of evaporation-recondensation,P( l ) is a constant
independent ofl, in the terrace diffusion case,P0( l ) is calculated from the diffusion equation with the boundary condition
the step edges being related to lattice sticking coefficients. The form ofP0( l ) depends on the mass transport mechanism, as
elucidate later in Sec. IV. However we can do the analysis to a large degree without knowing the explicit form
mobilities @the curious reader may look at Eqs.~46! or ~49! for some examples ofP0( l )#. The integral describing the way in
which fluctuations heal due to mass transport between steps is very similar to Eq.~8!:

Jk61,k~x,t !5E
0

L/2

P1~ l !$mk61~x1 l ,t !22mk~x,t !1mk61~x2 l ,t !%dl. ~9!

P1( l ) is the probability that an atom is exchanged between two sites separated by a distancel along thex axis but located on
the adjacent step edges, and is calculated in a similar manner toP0( l ). The probability functions are even and normalized
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2E
0

L/2

dl„P0~ l !1P1~ l !…51. ~10!

Step perturbations or fluctuations are randomly generated by the noise termhk(x,t) and then healed by the process
described in the integralsJk,k andJk61,k . The noise must be constructed so that the time independent equilibrium prop
of the steps are reproduced. Since we assume that there are no interactions between steps, the equilibrium correlat
step train are simply those of noninteracting steps. We shall return to this later.

A Fourier transform

hk~x,t !5(
q

hkq~ t !eiqx, ~11!

and similarly for hk(x,t), with q52pn/L and n561,62, . . . ,6L/ai in Eq. ~6!, yields theN-dimensional set of linear
first-order differential equations:

]hW q~ t !

]t
52M̃ ~q!hW q~ t !1hW q~ t !, ~12!

with M̃ given by

M̃ ~q!51
g0~q! 2

1

2
g1~q! 0 ••• 2

1

2
g1~q!

2
1

2
g1~q! g0~q! 2

1

2
g1~q! ••• 0

A � � � A

0 ••• 2
1

2
g1~q! g0~q! 2

1

2
g1~q!

2
1

2
g1~q! ••• 0 2

1

2
g1~q! g0~q!

2 , ~13!
ua-

sym-
-
r

where

g0~q!5
s̃q2a'

th
H 122E

0

L/2

P0~ l !cosql dlJ ,

g1~q!5
2s̃q2a'

th
E

0

L/2

P1~ l !cosql dl, ~14!

with the reduced stiffnesss̃5S̃V/kBT having units of
length.

FIG. 1. Diffusion kernels on a vicinal surface.
In order to decouple the system of equations~12!, we
need to diagonalize the matrixM̃ . Since this matrix is circu-
lant @18#, it is also diagonalized by a Fourier transform,

vW q~ t !5Ũ1hW q~ t ! with Ukm5
1

AN
ei (k21)p ~15!

wherep52pm/N, m50,1,2, . . . ,N21. When this is com-
pleted, we arrive at a set of decoupled linear Langevin eq
tions

]vpq~ t !

]t
52

vpq~ t !

tpq
1hpq~ t !, ~16!

where each mode (p,q) has a relaxation timetpq given by

tpq
215g0~q!2g1~q!cosp, ~17!

and is associated with the noisehpq(t). The statistics of the
noise is unaltered, and therefore we can keep the same
bol hW . In the absence of noise, Eq.~16! describes the relax
ation of a periodic mode~e.g., sinusoidal with wave numbe
q along the steps andp perpendicular to the steps! with re-
laxation timetpq . This mode relaxes as

vpq~ t !5vpq~0!e2t/tpq, ~18!
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wherevpq(0) is the initial ~small! amplitude of the mode.
We are now ready to calculate the key correlation fu

tion Ck(x,t). First we solve the linear Langevin equatio
~16!,

vpq~ t !5e2t/tpqE
0

t

et8/tpqhpq~ t8!dt8. ~19!

Then

^vp1q1
~ t1!vp2q2

~ t2!&5e2t1 /tp1q1
2t2 /tp2q2

3E
0

t1E
0

t2
et18/tp1q1

1t28/tp2q2

3^hp1q1
~ t18!hp2q2

~ t28!&dt18dt28 .

~20!

To proceed further, we need to decide on a form for
noise. We choose Gaussian white noise, in which case

^hp1q1
~ t1!hp2q2

* ~ t2!&5 f ~p1 ,p2 ,q1 ,q2!dp1 ,p2
dq1 ,q2

d~ t1

2t2!. ~21!

Evaluating Eq.~20! using this form of the noise leads to

^vpq~ t1!vpq* ~ t2!&5
f ~p,q!tpq

2
~e(t12t2)/tpq2e2(t11t2)/tpq!.

~22!

Taking the limit t1˜` and settingt22t15t, we obtain

^vpq~ t1!vpq* ~ t11t !&5
f ~p,q!tpq

2
e2t/tpq. ~23!

We reconstruct the key correlation functionCk(x,t) by in-
verting the Fourier transforms~11! and ~15! as

Ck~x,t !5
V

NLs̃
(

q

cosqx e2g0(q)t

q2 (
p

cospk eg1(q)t cosp,

~24!

where p52pm/N, m50,1,2, . . . ,N21, and q52pn/L,n
561,62, . . . ,6L/ai . In finding Eq.~24!, we have also se
f (p,q)52V/( s̃Lq2tpq). This choice is necessary so th
C0(0,0) reproduces the squared equilibrium widthLV/12s̃
@19#.

Section III presents an analysis of Eq.~24! in a variety of
solvable limits. This section is used in Sec. IV which d
cusses physical cases, but may be skipped by those uni
ested in a detailed analysis.

III. ANALYSIS OF VARIOUS TIME REGIMES

Taking the continuum limit of thep sum gives~p. 376-
9.6.19 of Ref.@20#!,

Ck~x,t !5
2V

Ls̃
(
q.0

cosqx e2g0(q)t

q2
I k„g1~q!t…, ~25!
-

e

er-

where I k(z) is the modified Bessel function of orderk and
argumentz. To make the analysis in this section simpler, w
will consider a summation over positiveq only.

At t50, Eq. ~25! reduces @becauseI kÞ0(0)50 and
I 0(0)51; p. 375-9.6.7 of Ref.@20## to @p. 39-1.443~3! of
Ref. @21##

C0~x,0!5
LV

2s̃
X1
6

2
x

L
1S x

L D 2C, ~26!

which is the equilibrium correlation function along a ste
while the equilibrium correlations between steps are z
@CkÞ0(x,0)50#. The equilibrium correlations between ste
CkÞ0(x,0) are zero due to the fact that there are no dir
energy terms between steps in our model. Nevertheless
demonstrated below, there are strongtime dependent corre
lations CkÞ0(x,t.0) between steps when there is correlat
mass transport across the terraces~e.g., terrace diffusion!.
These correlations are absent in the case of evapora
condensation and step-edge diffusion. The analysis of
correlations between different steps thus provides a met
to distinguish between evaporation-condensation and ter
diffusion, which have very similar trends in the correlatio
function on the same step.

Due to the difference between the equilibrium behavior
the correlation functions between the same steps and di
ent steps, we treat these two cases differently. For corr
tions between different steps we useCkÞ0(x,t), which in-
creases from zero at short time. For the step self-correlat
we useG(x,t) which also increases from zero at short tim
rather thenC0(x,t) which starts at its equilibrium value. Thi
is more convenient when testing for the power law behavi
so typical of step dynamics.

To proceed to an analytic analysis of the time depende
of CkÞ0(x,t) andG(x,t), we need more detailed expressio
for g0(q) andg1(q). We show in Sec. IV that the importan
asymptotic behaviors of these functions can be expresse
relatively simple forms. There are two cases; one is for t
race diffusion~case A! and the other applies to evaporatio
condensation, step-edge diffusion, or terrace diffusion w
an infinite Schwoebel barrier~case B!.

In case A~terrace diffusion!,

g0~q!'A1uqug11Buqub, g1~q!'A1uqug1 for uqu,q0 ,

g0~q!'A2uqug2, g1~q!50 for uqu.q0 . ~27!

For uqu,q0 , Buqub!A1uqug1 is always satisfied, and we wil
neglect termBuqub in the following calculation except in the
expressiong0(q)2g1(q).

In case B~evaporation-condensation, step-edge diffusi
or terrace diffusion with an infinite Schwoebel barrier!,

g0~q!'A1uqug1, g1~q!50 for uqu,q0 ,

g0~q!'A2uqug2, g1~q!50 for uqu.q0 . ~28!

The details of the system of interest~terrace width, ener-
gies, diffusion constants, etc.! are primarily contained in the
prefactorsA1,2, the crossover wave numberq0, and the
lower limit of q52p/L. The exponentsg1,2 take on quite
universal values depending on the mass transport me
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nism. Nevertheless we now do a complete asymptotic an
sis without knowing these details, and then use those res
in Sec. IV. In Sec. IV we also compare these asympto
results with direct numerical evaluations of Eq.~24! for
physically interesting cases.

There are three important asymptotic time regimes in
step dynamics:~i! early timest˜0, ~ii ! intermediate times
0!t!ts , and~iii ! very long timest@ts . Here, the charac
teristic time

ts5~L/2p!g1/A1 ~29!

is the decay time of slowest mode in the system. We pre
the asymptotic forms forCkÞ0(x,t) and G(x,t) in these
three regimes, though frequently~ii ! is the most experimen
tally accessible one.

A. Correlations between different steps —CkÞ0„x,t…
„only case A…

Starting from zero att50, the correlation between step
CkÞ0(x,t) grows due to correlated mass transport betw
steps. Neither step-edge diffusion, evaporation-condensa
nor terrace diffusion with an infinite Schwoebel barrier~case
B! produce this correlation, soCkÞ0(x,t)50 in these cases
Considering case A@Eq. ~27!#, sum~25! ceases to contribute
for q.q0, due to the fact that the Bessel functionI kÞ0(0)
50. We then have@combining Eqs.~25! and ~27!#

CkÞ0~x,t !5
2V

Ls̃
(

q,q0

cosqx e2A1qg1t

q2
I k~A1qg1t !. ~30!

~i! Short times t̃ 0. At short times, we expand the Bess
function for small argument~p. 375-9.6.7 of Ref.@20#!,

I k~z!5S z

2D k 1

k!
, z˜0, ~31!

and set the exponential to 1, which yields

CkÞ0~x,t !5
2V

Ls̃
(

q,q0

cosqx

q2

~A1qg1t !k

2kk!
. ~32!

This is valid providedt!1/(A1q0
g1). Turning the sum into an

integral and evaluating shows that at smallx we have

CkÞ0~x,t !5
V

s̃p

q0
kg121

k! ~kg121! S A1t

2 D k

, q0x˜0. ~33!

~ii ! Intermediate times0!t!ts . In this regime, sum~25!
is dominated by smallq, so we can take the upper limit tò.
However, all values ofq contribute, so we can take the co
tinuum limit and, rewriting in terms of more convenient va
ables, we then find
y-
lts
c

e

nt

n
n,

l

CkÞ0~x,t !5
V

p s̃

~A1t !1/g1

g1

3E
0

`
e2ycosS xS y

A1t D
1/g1D I k~y!

y111/g1
dy. ~34!

For smallx, the cosine tends to unity, and the integral m
be written in terms ofg functions ~p. 486-11.4.13 of Ref.
@20#!,

CkÞ0~x,t !5
V

s̃p3/2

21/g1GS k2
1

g1
DGS 1

2
1

1

g1
D

g1GS k1
1

g1
11D ~A1t !1/g1,

x˜0. ~35!

~iii ! Long time limit t@ts . We may then use the large argu
ment expansion for the Bessel function~p. 377-9.7.1 of Ref.
@20#!

I k~z!'
ez

~2pz!1/2
. ~36!

Now the small correctionBuqub is the only term that survives
in Eq. ~25!. The first term in the sum is dominant; thus, f
small x,

Ck~x,t !'
2V

Ls̃
S L

2p D 21g1/2e2B(2p/L)bt

~2pA1t !1/2
,

x

L
˜0. ~37!

A surprising feature of this expression is that it is indepe
dent of k, indicating that asymptotically all of the steps a
correlated in the same way. It is also valid fork50, i.e.,
correlations on the same and different steps decay at
times in the same manner.

B. Correlations on the same step —G„x,t…
„both cases A and B…

We consider@combining Eqs.~3! and ~25!#

G~x,t !5
2V

Ls̃
(

q

12cosqx e2g0(q)tI 0„g1~q!t…

q2
. ~38!

First, we analyze this equation for smallx ~when the cosine
tends to unity! for three time regimes.

~i! Short times t̃ 0. At short times, usingI 0(0)51 and
g0(q)5A1qg1 for q,q0 , g0(q)5A2qg2 for q.q0, and ex-
panding the exponential in Eq.~38! to the second order, we
find

G~x˜0,t !5
V

p s̃
S A1

q0
g121

g121
1A2

~2p/ai!
g2212q0

g221

g221
D t

~39!

for both the cases A and B.
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~ii ! Intermediate times0!t!ts . This regime actually
breaks up into two regimes. The first, 0!t!tx , is dominated
by the modes in the regimeq@q0, while the second,tx!t
!ts , is dominated by modes in the regimeq!q0. These
regimes are quite distinct due to the fact thattpq only ap-
pears in the exponential. It is then quite a good approxim
tion to treat the first time regime usingA2qg2, and the later
time regime usingA1qg1. We do an analysis similar to tha
leading to Eq.~34! to find

G~x˜0,t !5
V

s̃p
GS 12

1

g2
D ~A2t !1/g2, t!tx , ~40!

for both cases A and B, and

G~x˜0,t !5C
V

s̃p
GS 12

1

g1
D ~A1t !1/g1, t@tx , ~41!

whereC5„21/g1g1G(1/211/g1)…/„ApG(1/g1)… ~integration
by parts using p. 486-11.4.13 of Ref.@20#! for case A, and
C51 @p. 333-3.434~1! of Ref. @21## for case B. The cross
over time tx is found by equating Eqs.~40! and ~41!, and
solving for the time. In the physical cases, there may
several different crossovers in this intermediate time regi
but the same general principles can be applied. Naturally
complexity makes experimental data difficult to analyze
general.

~iii ! Long times t.ts . We first findC0(x˜0,t) for long
times. In case A, it is given by Eq.~37!. In case B, the
argument of the Bessel function in Eq.~25! is zero. We then
haveI 0(0)51, and, since the first term in the sum is dom
nant,

C0~x˜0,t !'
2V

Ls̃
S L

2p D 2

e2t/ts, ~42!

whose time scale is set by the slowest mode in the sys
ts . Then, using Eq.~3!,

G~x˜0,t !5
LV

12s̃
2C0~x˜0,t !. ~43!

For largerx we find, combining Eqs.~3! and ~26!,

G~xÞ0,t !5
Vx

2s̃
S 12

x

L D ~44!

for short times. On the other hand, we findG(xÞ0,t)
5G(0,t) for longer times. Therefore,G(xÞ0,t) is initially
constant in time until the correlation length along the s
increases approximately to a valuex. If Aqg is the dominant
regime, we find that Eq.~44! is valid for t!xg/A. This time
depends on the kind of dynamics throughg andA, and de-
fines the propagation speed of the fluctuations. As expec
the initial fluctuation~44! depends onx ands̃, but not on the
kind of dynamics, i.e.,g andA.
-

e
e,
is

m,

p

d,

IV. RESULTS FOR THREE RELAXATION MECHANISMS

First we confirm that our formalism reproduces the kno
results for the cases of evaporation-condensation and s
edge diffusion, as these cases are quite simple within
context of the formalism we have set up in Secs. II and
The majority of this section is devoted to mass transport
terrace diffusion, which can produce dynamical correlatio
between neighboring steps.

Where possible, we compare with prior work, and in d
ing so, we note that there are three different correlation fu
tions used in the literature. In addition toG(0,t) as defined in
Eq. ~1!, we have

w2~ t !5^h~0,t !2&5G~0,2t !,

^„h~0,t !2h~0,0!…2&52G~0,t !. ~45!

w2(t) describes how the fluctuations of a step grow w
time, assuming that the step is initially straight. It is thus
nonequilibrium correlation function. However, within th
linear approximation, it is easy to show thatw2(t)
5G(0,2t), so that the nonequilibrium and equilibrium co
relations are proportional. However, much of the prior ana
sis has been for the relaxation timetpq , which does not
require the rather tedious inverse Fourier transforms lead
to Eq. ~24! or the detailed analysis of Sec. III. Howeve
comparison with many of the STM and REM experimen
does require the time-dependent correlation functions.

A. Evaporation-condensation

In this case, there is transport of mass from the surfac
the vapor, and from the vapor back to the surface. Ther
no direct mass transport between adjacent steps. Thus
model this case by a uniform diffusion kernel to the sa
step and zero diffusion kernel between adjacent steps,

P0~ l !5
1

L
, P1~ l !50. ~46!

Another way to treat evaporation-condensation would be
using P0( l )5P1( l )51/(2L), which gives the same relax
ation time as Eqs.~46!. The characteristic timeth is the time
between atomic detachment events from a step edge into
vapor. In the simplest case we would expect an activa
behaviorth

215tEC
215n exp(2EEC/kBT), wheren is a char-

acteristic phonon frequency andEEC is an evaporation en
ergy. However, this simplified theory remains valid even
many different processes~and barriers! play a role, provided
they can be treated as independent. Equation~14! then yields

g0~q!5
s̃a'

tEC
q2, g1~q!50 ~47!

for all values ofq. Thus this is the case B@Eq. ~28!# of Sec.
III without crossoverq0, with A15A25 s̃a' /tEC and g1
5g252. In the intermediate time regime@Eqs.~40! or ~41!#,
we have

G~0,t !5VS a'

p s̃
D 1/2S t

tEC
D 1/2

. ~48!
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This result is essentially the same as that of Barteltet al. @8#.

B. Step-edge diffusion

We restrict diffusion to nearest neighbors along the s
edge by defining,

P0~ l !5 1
2 $d~ l 2ai!1d~ l 1ai!%, P1~ l !50. ~49!

The characteristic timeth is now the time between atomi
hopping events between nearest neighbors. We assum
simple activated behaviorth

215n exp(2ESE/kBT)$exp
(2El /kBT)1exp(2Er /kBT)%, wheren is a characteristic pho
non frequency, andESE the step-edge binding energy, whi
El andEr are the additional activation barriers that an ato
has to overcome to move to the left or right, respectively.
the simplest symmetric caseEl5Er50; thus th

2152tSE
21

wheretSE
215n exp(2ESE/kBT). Using Eq.~14! then leads to

g0~q!5
2s̃a'

tSE
q2$12cosqai%, g1~q!50. ~50!

An expansion ofg0(q) at smallq yields a behavior like tha
of case B, withA15 s̃a'ai

2/tSE, g154, andq051/ai . Re-
gion uqu.q0 is very small, and has a negligible influence
correlation functions. Thus, in the intermediate time regi
we find @using Eq.~41!#

G~0,t !5
1

p
GS 3

4D S V5ai

s̃3 D
1
4S t

tSE
D 1/4

. ~51!

This agrees with Barteltet al. @8#.

C. Terrace diffusion

In the terrace diffusion model, an atom detaches onto
terrace below the step edge with probabilitypL , and onto the
p

a

n

e

e

terrace above the step edge with probabilitypU . It then dif-
fuses on the terrace until it reattaches to the same step
or one of the adjacent step edges. We defineaL to be the
sticking coefficient of an atom which approaches a step e
from the lower terrace, andaU to be the sticking coefficien
on approach to the step edge from the upper terrace.
assume simple behavior whereETD is the binding energy,
and EL and EU are the energy barriers that an atom has
overcome to move to the lower or upper terraces, resp
tively. EL andEU are also energy barriers that an atom has
overcome to stick to the step edge on its approach from
lower and upper terrace, respectively.EU is the ‘‘Schwoebel
barrier.’’ In terms of these energies, the detachment pro
bilites pU andpL are the probabilities of detaching

pL5
e2EL /kBT

e2EL /kBT1e2EU /kBT
, pU5

e2EU /kBT

e2EL /kBT1e2EU /kBT

~52!

and the sticking coefficients~see the Appendix!

aL5
e2EL /kBT

~12e2EL /kBT!a'

, aU5
e2EU /kBT

~12e2EU /kBT!a'

.

~53!

The sticking coefficients can have any value in the ran
@0,̀ ), where 0 corresponds to no sticking and` to perfect
sticking.

Since atoms diffuse on the terrace,P0( l ) and P1( l ) are
the probabilities for a random walk on the surface betwe
two fluctuating semisticking walls. The calculation of the
probabilities for straight step edges is done in the Append
vided the
P0~ l !5pUP~aU ,aL ,d,d2a' ,l !1pLP~aL ,aU ,d,d2a' ,l ! ~54!

and

P1~ l !5pUP~aL ,aU ,d,a' ,l !1pLP~aU ,aL ,d,a' ,l !, ~55!

where

P~a1 ,a2 ,d,b,l !5
1

2pE2`

1`

dk
a1~k coshkb1a2 sinhkb!

~k21aUaL!sinhkd1k~aU1aL!coshkd
coskl. ~56!

These results for two straight edges can be used as the diffusion kernels mediating the dynamics of fluctuation pro
fluctuations are relatively weak~the small slope limit!. Integrals~14! may be evaluated to find

g0~q!5
s̃a'

th
q2$12pUg~aU ,aL ,d,d2a' ,q!2pLg~aL ,aU ,d,d2a' ,q!% ~57!

and

g1~q!5
s̃a'

th
q2$pLg~aU ,aL ,d,a' ,q!1pUg~aL ,aU ,d,a' ,q!%, ~58!
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where

g~a1 ,a2 ,d,b,q!5
a1~q coshqb1a2 sinhqb!

~q21aUaL!sinhqd1q~aU1aL!coshqd
. ~59!
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Here the characteristic time is related to step edge ener
by

th
215tTD

21$e2EL /kBT1e2EU /kBT%, ~60!

where tTD
215n exp(2ETD /kBT), and n is a characteristic

phonon frequency.
In Fig. 2, we plot the spectrum of inverse relaxation tim

using Eqs.~57! and~58! in Eq. ~17! for four different cases:
aL5aU5103/a' ~perfect sticking!, aL5aU51022/a'

~weak sticking!, aL5103/a' and aU51023/a' ~finite
Schwoebel barrierEL!EU), and aL5103/a' and aU50
~infinite Schwoebel barrierEU˜`). Note in Fig. 2 that, ex-
cept in the infinite Schwoebel barrier case when there in
atom exchange between the steps, the spectrum of relax
times is spread betweenq4 andq2 for small values ofq. This
leads to the step-step correlation inCk(x,t). On the other
hand, the spectrum shrinks to one value~that scales asq2 in
weak sticking case, andq3 in perfect sticking and Schwoebe
barrier case! for larger values ofq. In this limit, there is no
step-step correlation. Using the spectrum of inverse re
ation times, plotted in Fig. 2, and doing numerical summ
tions overq andp, G(x,t) andCk(0,t), defined by Eqs.~3!
and ~24!, are plotted in Figs. 3 and 4.G(x,t) is plotted for

FIG. 2. Inverse relaxation times 1/tpq in the terrace diffusion
case for a surface withN510 steps~due to degeneracy, a maximum
of six distinct modes occur!; d530a' andL5104ai . We use dif-

ferent ratioss̃a' /ai
2 for each spectrum to avoid overlapping th

spectra. They are plotted for the following sticking coefficien

~from the top!: aL5aU51022/a' and s̃a' /ai
25109; aL5aU

5103/a' and s̃a' /ai
25104; aL

l 5103/a' , aU
l 51023/a', and

s̃a' /ai
2510; andaL

l 5103/a' , aU
l 50, ands̃a' /ai

251. Except in
the infinite Schwoebel barrier case~bottom line!, the spectrum of
relaxation times is spread betweenq4 andq2 for small values ofq.
On the other hand, the spectrum shrinks to one value~that scales as
q2 for the top line, andq3 for the other lines! for larger values ofq.
ies

s

o
ion

x-
-

the four different cases of the sticking coefficients illustrat
in Fig. 2. Each case has a different time scaling. We a
show the small time plateau inG(x,t) which exists at finite
x @see Eq.~44!#. Ck(0,t) is plotted only for the perfect stick
ing case for a couple of nonzero values ofk. Other cases,
with nonzero sticking coefficients, show the same scali
These numerical results are compared to the approxim
analytical forms of Tables I–III~see below! which are plot-
ted as dashed lines in Figs. 3 and 4. Those analytical for
listed in Tables I and II, are obtained by substituting expr
sions for relaxation times derived below into Eqs.~40!, ~41!,
~33!, and ~35!. We also plotd2 as a horizontal dash-dotte
line to show when the step fluctuation width exceeds
distance between the steps. Since our model does not inc
the direct step-step interaction, it fails above thed2 line.
Now we derive the limiting forms for the correlation func
tions G(0,t) andCk(0,t).

In the limit q!1/ai , expressions~57!–~59! reduce to

g0~q!5
s̃a'

2

tTD
uqu3

2aUaL coshqd1~aU1aL!q sinhqd

~q21aUaL!sinhqd1q~aU1aL!coshqd
~61!

and

g1~q!5
s̃a'

2

tTD
uqu3

2aUaL

~q21aUaL!sinhqd1q~aU1aL!coshqd
.

~62!

These expressions then lead to the relaxation time of a m
of (p,q) according totpq

215g0(q)2g1(q)cosp. Approxi-
mate expressions for this relaxation time were found
Pimpinelli et al. @9# in a variety of limiting cases, though
they implicitly assumed ‘‘in phase motion.’’ Khare and Ein
stein @16# considered in phase and out of phase motion@Aq
62Bq5g0(q)6g1(q)#. In finding the time-dependent cor
relations, we need the full spectrum~all values ofp). Ihle,
Misbah, and Pierre-Louis@13# also considered the full spec
trum, and we reproduce their results for the cases they c
sider@they only consideredG(0,t)#. We now discuss limiting
cases in which the time dependent correlations may be
plicitly evaluated.

T1 — Terrace diffusion 1(d˜`). The larged limit
eliminates the flux from neighboring steps, so the steps
independently. In this ‘‘isolated step’’ limit, Eqs.~61! and
~62! reduce to

g0~q!5
s̃a'

2

tTD
uqu3S aU

aU1uqu
1

aL

aL1uqu D , g1~q!50.

~63!

Since g1(q)50, tpq
215g0(q) and CkÞ0(x,t)50 ~case B!.

From Eq. ~63! it is seen that even isolated steps can ha
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FIG. 3. The autocorrelation function in the case of terrace diffusion.N510,L5105ai , d5100a', andkBT/S̃51. Solid lines are Eq.~3!,
found from numerical summation of Eq.~24! with Eqs. ~57!–~60!. Dashed lines are the equations listed in Table I (0!t!ts), and the
horizontal dash-dotted line isd2. The noninteracting approximation we use here is only valid when the correlations are less thand2. The data
are for sticking coefficients:~a! aL5aU51022/a' ~caseT3), andx50, x55, andx5500 from the bottom;~b! aL5aU5103/a' ~caseT3),
andx50, 10, and 1000~from the bottom!; ~c! aL5103/a' andaU51023/a' ~caseT3), andx50, 10, and 1000~from the bottom!; ~d!
aL5103/a' , andaU50 ~caseT2), andx50, 10, and 1000~from the bottom!.
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three possible regimes: whenuqu@aU,L , then g0(q)

5 s̃a'
2 (aU1aL)q2/tTD ~the q2 dependence for small stick

ing coefficients was noted in Ref.@10#!; when aU!uqu
!aL ~assumingaU!aL), then g0(q)5 s̃a'

2 uqu3/tTD , and

when uqu!aU,L , then g0(q)52s̃a'
2 uqu3/tTD ~the last ex-

pression was derived before@10#!. Three differentq regimes
lead to three different intermediate time regimes in the c
relation functionG(0,t) as summarized in Table I@using
Eqs. ~38!–~43!#. After the noninteracting diffuser regimet
˜0, there is an early time 0!t!t1

T1 ~largeq dominant!, in
which short range processes must overcome the sticking
efficients in order to proceed. For this reason,aU1aL ap-
pears as a prefactor. This regime is not well defined
aU,L˜`. In the regimet1

T1!t!t2
T1, one of the terraces~the

upper one for the caseaU!aL) does not contribute, sinc
the approach to the step edge from that terrace has su
small sticking coefficient. This regime is only well defined
the two sticking coefficients are very different~e.g., the large
Schwoebel barrier case, whenaU!aL). In the regimet2

T1

!t!ts
T1 , both terraces contribute equally and small sticki
r-

o-

if

a

coefficients do not play a role. This regime is not well d
fined if aU'0 or aL'0. Finally, at long enough times, th
relaxation is controlled by the slowest mode in the syste
Note that these forms apply, at sufficiently short time, ev
for quite closely spaced steps in a step train, as discus
below.

T2 — Terrace diffusion 2(d finite, aU50 or aL50).
SettingaU50 or aL50 implies that no mass is transporte
from one step to either of its neighbors~‘‘large barrier
limit,’’ e.g., the large Schwoebel barrier corresponds toaU
50). At short time~large q dominant!, isolated terrace be
havior occurs, especially for well separated steps. For sm
q, Eqs.~61! and ~62! reduce to

g0~q!5
s̃da'

2

tTD
q4, g1~q!50; ~64!

thus CkÞ0(x,t)50 ~case B!. The q4 dependence leads to
long time behavior like that of step-edge diffusion, as se
by comparing the correlation functions for this case with th
of step edge diffusion~see Table I!. The results in Table I are
found using Eqs.~41!, ~43!, and~64!.
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FIG. 4. The step-step correlation function in the terrace dif

sion (T3) limit. For N510, L5105ai , d530a' , kBT/S̃51, and
aL5aU5103/a' . Solid lines are the results of numerical summ
tion of Eq. ~24! using Eqs.~57!–~60!. Dashed lines are the equa
tions listed in Table II (t!ts), and the horizontal dash-dotted line
d2. The noninteracting approximation we use here is only va
when the correlations are less thand2. We considered steps sep
rated from each other byk51, 2, and 3~from the top! intervening
steps. The inset is a linear-log plot that shows the exponential
dependence at long times.
T3 — Terrace diffusion 3(d finite, aU,LÞ0!. In this case
theT1 ~isolated step! processes occur at short times~largeq
dominant!. For analysis of the long time behavior~small q
dominant!, it is useful to define the length

d05
aU1aL

aUaL
. ~65!

If d0 is finite (d0˜` leads to theT2 limit!, mass transport
between steps is dominant. The approximate forms of E
~61! and ~62! for this case are

g0~q!5
s̃a'

2

tTD
S 2

d1d0
q21dq4D , g1~q!5

2s̃a'
2

tTD~d1d0!
q2,

~66!

due to the mass transport occurring between stepsg1(q)
Þ0, and this is the mathematical origin of a finite value
CkÞ0(x,t). Results for this limit are summarized in Tables
and II, where we have usedq0'2/d from Fig. 2. This case is
probably very important as experimental systems usually
isfy d!L, so that the diffusion kernels are then affected
adjacent steps. This leads to a correlation between step
tuations on neighboring steps which becomes the ‘‘sig
ture’’ of the T3 process. The autocorrelation functionG(0,t)

-

e

TABLE III. Equations for limiting time scales.

Characteristic time Physical origin

Evaporation-condensation~EC!

tEC5
eEEC /kBT

n

Time related to the binding energy (EEC) at the step edge

t s
EC5

tEC

s̃a'

S L

2p D 2 Slowest mode

Step-edge diffusion~SE!

tSE5
eESE/kBT

n

Time related to the binding energy (ESE) at the step edge

t s
SE5

tSE

s̃a'ai
2 S L

2p D 4 Slowest mode

Terrace diffusion~TD!

tTD5
eETD /kBT

n

Time related to the binding energy (ETD) at the step edge

t s
T15

tTD

2s̃a'
2 S L

2p D 3 Slowest mode: terrace diffusionT1 ~isolated step limit!

t s
T25

tTD

ds̃a'
2 S L

2p D 4 Slowest mode: terrace diffusionT2 ~large barrier limit!

t s
T35

tTD~d1d0!

2s̃a'
2 S L

2p D 2 Slowest mode: terrace diffusionT3 ~step to step limit!

t1
T1 ,t2

T1 Crossover times for isolated step limit (T1)
t1
T2 Crossover time for large barrier limit (T2)

t1
T3 Crossover time for step to step limit (T3)
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~Table I! can have a wide variety of different behaviors. B
the pair correlation function only measures theT3 process,
as it depends on having a finiteg1(q) corresponding to cor-
related mass transfer between steps. This makes the pair
relation function a useful diagnostic of the dominant surfa
transport modes.

V. CONCLUSIONS

We have shown that the pair correlation function betwe
two different steps,CkÞ0(x,t), can differentiate between ter
race diffusion and other surface transport processes, as
identically zero for the cases of evaporation-condensa
and step-edge diffusion. In contrast,CkÞ0(x,t) is finite and
quite large in the case of terrace diffusion. SinceG(0,t) is
affected byall mass transport mechanisms, measurement o
G(0,t) and CkÞ0(0,t) makes it possible to determine th
relative importance of terrace diffusion to the other types
mass transport in surface dynamics. The limiting results
CkÞ0(0,t) and G(0,t) are summarized in Tables I–III, an
the general results are in Eqs.~30! and ~38!. We have also
calculated the behavior ofG(x,t) for various values ofx @see
Figs. 3~a!–3~c!#. An experiment in which bothG(x,t) and
CkÞ0(x,t) are measured, in combination with a theory li
that here, should provide definitive information about t
surface mass transport mechanisms.

The analysis here takes a different perspective than
used by previous authors. In particular, we defined a Lan
vin equation in real space, with ‘‘diffusion kernels’’ repre
senting the mass transport processes@see Eq.~6!#. We find
this real space picture physically appealing and complem
tary to the conventional methods@13,16#.
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APPENDIX: DERIVATION OF P FOR THE TERRACE
DIFFUSION CASE

Consider two straight parallel steps 1 and 2 at a distand
from each other. The terrace between the steps is a dis
square lattice defined byx and y axes that are parallel an
perpendicular to the steps, repectively. The origin (x,y)
5(0,0) is located at distancea from the right of step 1 and a
distanced2a from the left of step 2. The energy barriers a
atom has to overcome to stick to step 1 or step 2 on appro
from the terrace areE1 and E2, respectively. Let us cal
p1( l ) and p2( l ) the probabilities that an atom will be ab
sorbed atx5 l by the step 1 or 2, respectively, after starti
a random walk from the origin.

In order to find those probabilities, we can assume t
there is a source of atoms, with magnitudeF, at the origin.
After emerging from the source, an atom does a rand
walk on the terrace until it sticks at a step edge. We defin
steady state probability density function for the distributi
of the walking atoms on the terraceP̃(x,y). By knowing
P̃(x,y), p1( l ) andp2( l ) can be found from
t
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p1~ l !5a'e2E1 /kBTP̃~ l ,2a1a'!,

p2~ l !5a'e2E2 /kBTP̃~ l ,d2a2a'!. ~A1!

P̃(x,y) must satisfy the Poisson equation

¹2P̃~x,y!52Fd~x!d~y!. ~A2!

In addition, it has to satisfy certain boundary conditions
the step edges. These conditions can be derived with
following simple reasoning. Since the probability that
atom, sitting on the site (x,2a1a'), will stick to site (x,
2a) on the step edge 1 ise2E1 /kBT, then the probability that
it will not stick and bounce back is 12e2E1 /kBT. Thus, ef-
fectively, P̃(x,2a)[(12e2E1 /kBT) P̃(x,2a1a') ~see p.
168 of Ref. @22#!. Using that and the fact thatP̃(x,2a

1a')2 P̃(x,2a)˜a'] P̃(x,2a)/]y for a'˜0, we obtain

] P̃~x,2a!

]y
5a1P̃~x,2a!, ~A3!

where notationa1[e2E1 /kBT/(12e2E1 /kBT)a' . Similarly,
on the other step edge,

] P̃~x,d2a!

]y
52a2P̃~x,d2a!, ~A4!

wherea2[e2E2 /kBT/(12e2E2 /kBT)a' . P̃(x,y) can now be
found by solving Eq.~A2! with conditions~A3! and ~A4!.

After calculatingP̃(x,y) ~see Appendix C of Ref.@11#!,
we use Eq.~A1! and normalization

2E
0

L/2

~p1~ l !1p2~ l !!dl51 ~A5!

to find F5a'
22 , andp1( l ) andp2( l ) as

p1~ l !5P~a1 ,a2 ,d,d2a,l !, p2~ l !5P~a2 ,a1 ,d,a,l !
~A6!

where the functionP is written in Eq.~56!. Instead of Eq.
~A1!, we could also use another interesting relationship
tweenP̃(x,y) and p1( l ) and p2( l ) ~after manipulation with
above equations!:

p1~ l !5a'
2 ] P̃~x,y52a!

]y
,p2~ l !52a'

2 ] P̃~x,y5d2a!

]y
.

~A7!
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