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We show that the dynamics of thmair correlation functionin a step train can pinpoint the dominant
relaxation mechanism occurring at a crystal surface. Evaporation-condensation and step-edge diffusion do not
produce dynamical correlations between neighboring steps, while terrace diffusion may lead to correlations
which fall off like a power law with distance and which are peaked at a characteristic time. We derive these
results within a “real space” Langevin formalism which is based on diffusion kernels which are different for
each mass transport process. We validate this formalism by reproducing the step fluctuation autocorrelation
function. We then derive results on the pair correlation between different steps. Results for solvable limiting
cases are summarized in Tables | and Il of the paper. As an intermediate step in the analysis we also find
expressions for the relaxation time, of a mode of wave numbeg along the steps and wave number
perpendicular to the steps, which we also discuss and compare with prior \8a063-651X99)06907-X]

PACS numbd(s): 05.40—-a, 68.35.Bs, 68.35.Ja

[. INTRODUCTION the pair correlation functionbetween two step€,(x,t).
C(x,t) is an averaged product of the fluctuations of two step
Steps are the most fundamental extended defects on crypesitions separated by distancparallel to the step edge and
tal surfaces. Their dynamics mediate the annealing of crystdpcated k steps apart. In order to calculate.(x,t) and
surfaces, the growth of single crystals, and many other surG(x,t), we first calculate the relaxation tims,, for steps
face processeEl]. Step dynamics are in turn mediated by which are modulated along the stepsth wave numben),
atom motion, usually either evaporation and condensatioand perpendicular to the stefwith wave numberp). By
from a vapor, diffusion across terraces or facets, or by diffusumming over all modes, with the correct matrix elements,
sion along step edges. The high resolution provided by scarwe then deriveC,(x,t) andG(x,t). Cy.o(X,t) is identically
ning tunneling microscopySTM) and reflection electron mi- zero for the cases of evaporation-condensation and step-edge
croscopy (REM) is providing atomic scale images of diffusion. In contrastC,..o(x,t) is finite and quite large in
stochastic step fluctuation®2—7]. Understanding of these the case of terrace diffusion. This means that measurement of
data requires a quantitative analysis of step fluctuations im finite value forC,..q(x,t) implies that terrace diffusion is
terms of the atomic processes producing tH8%13]. Such  important. Since5(t) quantifies the cumulative effect afl
theory, in combination with high quality step fluctuation mass transport mechanismby combining the results of
data, provides a unique method for determining the dominan®(t) andC,..¢(x,t) it is then possible to determine the rela-
modes of mass transport across surfaces, and for estimatitige importance of terrace diffusion as compared to the other
the energy barriers which impede the various atomic protypes of surface mass transport.
cesses contributing to them. A complementary probe of Our calculations use a real space Langevin formalism
atomic diffusion processes is the study of the decay of spewhich provides a nice physical picture of the diffusion pro-
cially prepared surface gratings, which in the small slopecesses contributing to mass transport on stepped surfaces,
limit are described by a closely related thediy,15. and also relates the sticking coefficients and kinetic param-
Current measurements and theory concentrate on the flueters more directly to step edge and terrace energy barriers.
tuations of a step belonging to a step trady(it). A simple A preliminary discussion of this formalism and results for
physical interpretation o&(t) is the mean square distance a G(0,t) have appeared as a conference proceedihfjs
point on a step diffuses as a function of time. At very short The paper is arranged as follows. Section Il contains the
times the motion is often diffusivé G(t)~t], but very real space formulation of step dynamics, with the key equa-
quickly the motion becomes subdiffuse due to the fact that @ions being Eq(17) for the relaxation timer,, and Eq.(24)
point on a step edge is connected to other points on the stdpr the correlation functiorC,(x,t). Section Ill contains an
edge and hence its motion is impeded. The exponent of thianalysis ofC,(x,t) andG(x,t) in a variety of time regimes.
subdiffuse motion is related to the dominant mode of atomicThis section can be skipped by those uninterested in the de-
transport, and the prefactors are related to the energy bariailed analysis. Section IV treats cases of physical interest, in
ers. The analysis d&(t), however, is often ambiguous as its particular evaporation-condensation, step-edge diffusion and
behavior is quite similar for different atomic diffusion terrace diffusion. Analytic results f@&(0,t) andC,(0,t) for
mechanism$9,11,16,13. solvable limiting cases are summarized in Tables | and I,
Here we generalize the analysis of step fluctuation correrespectively. Examples illustrating some of the more inter-
lations by studying thex dependence of correlations on the esting crossovers between these limiting cases are illustrated
same stepi.e., G(x,t)], and more importantly by analyzing in Figs. 3 and 4. Section V contains a brief conclusion.
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TABLE I. Limiting behaviors forG(0y).

Mass transport mechanism Time regime G(0y)
Evaporation-condensatidiEC) t—0 ~t
ST
o<t<ry Q<aL)1/2( ¢ )1/2
s TEC
ST
> ’Ts LQ 6 Ec
— 1= _eftlfS
1%s\° w
Step-edge diffusiofSE) t—0 ~t
O<t<7SE ) 0% vag o\ 1
TS TSE
SE
> Tg LO SE
f— :l___ze—t/a'S
12s w
Terrace diffusion 1 T1) t—0 ~t
d—oo o<t<t]? apta |\
a, = 7_—
s TD
H Tl ot 2471
(isolated step t<t<t; QF(%)(af)m( t )1’3
= 32 \mo
Tl ot e T1
ty <t<<7g QI‘(%) 2af 13 ¢ /3
= \32) o
T1
> TS L 1 6 7t/TT]‘
Tl
Terrace diffusion 2 72) t<t]? as for isolated stepT(l)
o _ _ T2t T2
d finite, ay=0 or ¢ =0 t o <t<rg are daf)m( ¢ )1/4
= ) o
(e.g., Schwoebel barrier «) t> 712 L 6 .
—1- _e*t/TS
155\° 7
Terrace diffusion 3 3) t<t]® as for isolated stefiT1)
d finite, ay  #0 t13<t<rl®

4Q0a,

1 )1/2( t )1/2
5d+dy)] | 7o

t> 713 1/2 12
s Lo _3_L3 d+do -+ e~ (2m/L)%sal dt/rrp
12s 27 Trafs TTD
Il. MODEL Let us define the equilibriumt{t;—x) correlation

Consider a train oN steps, all with length_ (see Fig. 1 functions

We number the steps witk=1,2, ... N, and assume peri- _1 _ 2

odic boundary conditions both along the step train and along GOGO = 2{[hi (aH XD =h (0, )15 (D)
each stepthis simplifies the analysis and is typical of steps
away from the edges of a finite step traihet h,(x,t) de-
scribe the random motion of theh step in the train about its
center of masswhich is assumed to biixed— there are no
“direct” interaction terms to produce center of mass dynam-
ics. The average distance between centers of mass of adj&(x,t) measures fluctuations, whi@®&(x,t) measures corre-
cent steps is the same everywhere on the surface and equédtions. Because of the periodic boundari€(x,t) and
d. Ci(x,t) do not depend or; andk;. By squaring the bracket

and

Ci(X,0) = (hy k(X +X,t +hy (Xg,)). v
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TABLE II. Limiting behaviors forC,_..4(0,t).

Mass transport mechanism Time regime Cro(t)
Terrace diffusion 3 T3) t—0 Qd 4§if k t )k
27kl (2k—1) \ (d+dg)d?/ \ 7o
d finite, ay | #0 O<t<7'l3 20 af 1/2( t 12
HE—1 (d+d0)ﬂ3§ TTD
t> 13 2 112 —12
° Q_L ﬂ) t e~ (2m/L)%sal d(t/rp)
8sm® wafs TTD

in Eqg. (1) and taking an average of each term individually, It is derived using
we find that these two functions are related as

S (L2
Fie~ Ef (Vhy)?dx )
G(x,1)=Co(0,0 — Co(x,1), 3 e
as the energy cost of Gaussian fluctuations of the step edge
whereCo(0,0) is the squared equilibrium width of a step.  apout its mean positiofL7]. Q=a, a; is the area of a sur-
The local chemical potentigl(x,t), which we associate  face element, witta, anda; being the lattice spacings per-

with the kth step, is pendicular and parallel to the step edge, respectively. We
- describe the time dependent fluctuations of the steps using a
w(X,t)=—Q3V2h,(x,t). (4) coupled set of Langevin equations,

oh(x,t) Ty (1 1
At KeT E‘Jk*l,k(xyt)+Jk,k(x1t)+§Jk+l,k(Xat) + (X, 1). ®)

Jy k describes the healing of the step fluctuation due to mass transport along a steg, whilandJ, . ; x describe the healing

of such fluctuations due to mass transport betweenlstapl stepk—1 andk+ 1, respectively. The healing of fluctuations

is driven by differences in the step chemical potential, and the rate of that healing is controlled by the rate at which mass may
be transferred in order to heal unfavorable chemical potential differences. The rate

a
Th=—, @)
Th

wherer;, is the time between detachment events, depends on the energy barriers which exist at the step edges. We shall discuss
this further in the context of specific types of mass transport.
Considering first healing due to mass transport along a step edge, the id{ggislgiven by

Li2
Ji k(X )= fo Po(D{ai(x+1,1) = 2 (X, 1) + i (X =1, 1) }dl, (8)

where the chemical potential difference between sites separated by distencentained in the curly brackets, and the
“mobility” is described by Py(l). This mobility is the probability that an atom is exchanged between two sites separated by
distancel along thex axis and located on the same step edge. In the case of evaporation-recondeR¢Bticma constant
independent of, in the terrace diffusion cas@y(l) is calculated from the diffusion equation with the boundary conditions at
the step edges being related to lattice sticking coefficients. The fofPg(bf depends on the mass transport mechanism, as we
elucidate later in Sec. IV. However we can do the analysis to a large degree without knowing the explicit form for the
mobilities [the curious reader may look at Eq46) or (49) for some examples d?y(1)]. The integral describing the way in
which fluctuations heal due to mass transport between steps is very similar (8)Eq.

Li2
Jix1x(X, 1) = fo Pr(D{ sk 1 (X+1,0) = 2(X,) + i 1 (X =1, ) JdLL 9

P,(l) is the probability that an atom is exchanged between two sites separated by a dist@mgethex axis but located on
the adjacent step edges, and is calculated in a similar maniy(kd. The probability functions are even and normalized,
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L/2
2f dI(Po(1)+Py(1))=1. (10)
0

Step perturbations or fluctuations are randomly generated by the noiseytéxat) and then healed by the processes
described in the integralk , andJy.1. The noise must be constructed so that the time independent equilibrium properties
of the steps are reproduced. Since we assume that there are no interactions between steps, the equilibrium correlations of the
step train are simply those of noninteracting steps. We shall return to this later.

A Fourier transform

he(x,t) =2 hyg(t)e'™, (11)
q
and similarly for 7,(x,t), with q=2zn/L andn==*1,+2,... *L/a in Eqg. (6), yields theN-dimensional set of linear
first-order differential equations:
dhg(t) . B,
ot Z_M(q)hq(t)+77q(t)y (12
with M given by
1 1
9(@)  —3501(q) 0 —591(0)
1 1
—501(@)  9(@  —30a(a) 0
M(q)= f : , (13
1 1
0 =501 9@ —5di(q)
1 1
—z0(@ 0 —5091(a)  9o(d)
|
where In order to decouple the system of equatidd®), we

need to diagonalize the matrit. Since this matrix is circu-
lant [18], it is also diagonalized by a Fourier transform,

en?2
go(Q)= = ai[l—quzPo(l)cosql dl],

h 0 - TR ; 1 i(k—1)p
Vg(t)=UThy(t)  with Ukm:\/_ﬁe (15)

2sq?a, (L2 -
g:(q)= f P,(l)cosqgl dl, (14  wherep=27m/N, m=0,1,2 ... N—1. When this is com-
Th 0 pleted, we arrive at a set of decoupled linear Langevin equa-
tions
with the reduced stiffness=30/kgT having units of Mo Vpg(D)
length. prommin i T (O (16)
Pq

where each modep(q) has a relaxation time,, given by

Tog =90(0) —g1(q)cosp, (17)

and is associated with the noisg(t). The statistics of the
noise is unaltered, and therefore we can keep the same sym-

bol ;7 In the absence of noise, E(.6) describes the relax-
ation of a periodic modée.g., sinusoidal with wave number
g along the steps anp perpendicular to the stepwiith re-
laxation time,,. This mode relaxes as

FIG. 1. Diffusion kernels on a vicinal surface. Vpq(t) =V pqg(0)e Y7, (18
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wherev,4(0) is the initial (smal) amplitude of the mode.
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wherel(z) is the modified Bessel function of ordkrand

We are now ready to calculate the key correlation func-argumentz. To make the analysis in this section simpler, we
tion C,(x,t). First we solve the linear Langevin equation will consider a summation over positivggonly.

(16),
t !
qu(t)=e“’Tqu e moag,q(t)dt’. (19
0

Then

—aty/ —ty/
(Vplql(tl)vpqu(t2)>_e 1/7py0,7 12/ 00,

(2, ’
X f f et1/7p1q1+t2/7p2q2
0 JO

X(77p,q,(t1) 7p,q,(t2))dtid ;.
(20

At t=0, Eqg. (25 reduces|becausel,.y(0)=0 and
10(0)=1; p. 375-9.6.7 of Ref[20]] to [p. 39-1.4483) of

Ref. [21]]
Q(l X [x 2)
6 L7 (E) ' 9

which is the equilibrium correlation function along a step,
while the equilibrium correlations between steps are zero
[Cyz0(X,0)=0]. The equilibrium correlations between steps
Cy=0(x,0) are zero due to the fact that there are no direct
energy terms between steps in our model. Nevertheless, as
demonstrated below, there are strditge dependent corre-
lations G..(X,t>0) between steps when there is correlated
mass transport across the terracesy., terrace diffusion

Co(x,0)=

To proceed further, we need to decide on a form for thelhese correlations are absent in the case of evaporation-

noise. We choose Gaussian white noise, in which case

(710, (t1) 75,0, (12)) = F(P1,P2,01,92) p, p, 0, ,q,(t1
—t,). (21
Evaluating Eq.(20) using this form of the noise leads to

f(P,q) 7pq
2

(e(tl—tz)/rpq_ e (t1+t2)/7pq) )

(22

<qu(t1)V;q(t2)> =

Taking the limitt;—oc and setting,—t;=t, we obtain

f 1
(p g) que_t/qu.

<qu(t1)V;q(t1+t)>: (23

We reconstruct the key correlation functi@j(x,t) by in-
verting the Fourier transformd 1) and(15) as

Cosq Xxe gO(Q)t

9

Cu(x,t)= 2 > cospk ef(@tcosp,
(24

wherep=27m/N, m=0,1,2 ...
=+1+2,..

N—1, andg=2mn/L,n

Co(0,0) reproduces the squared equilibrium widtf/17s
[19].

Section Il presents an analysis of Eg4) in a variety of
solvable limits. This section is used in Sec. IV which dis-

.,®L/q. Infinding Eq.(24), we have also set
f(p,q)=29/(§Lq27pq). This choice is necessary so that

condensation and step-edge diffusion. The analysis of the
correlations between different steps thus provides a method
to distinguish between evaporation-condensation and terrace
diffusion, which have very similar trends in the correlation
function on the same step.

Due to the difference between the equilibrium behavior of
the correlation functions between the same steps and differ-
ent steps, we treat these two cases differently. For correla-
tions between different steps we u€g.q(X,t), which in-
creases from zero at short time. For the step self-correlation,
we useG(x,t) which also increases from zero at short time,
rather therC(x,t) which starts at its equilibrium value. This
is more convenient when testing for the power law behaviors
so typical of step dynamics.

To proceed to an analytic analysis of the time dependence
of Cy.o(X,t) andG(x,t), we need more detailed expressions
for go(q) andg;(q). We show in Sec. IV that the important
asymptotic behaviors of these functions can be expressed in
relatively simple forms. There are two cases; one is for ter-
race diffusion(case A and the other applies to evaporation-
condensation, step-edge diffusion, or terrace diffusion with
an infinite Schwoebel barridcase B.

In case A(terrace diffusion,

ol ~Aqla|1+B|al?, gi(aq)~A4lq|”r for |g|<qo,

la|>qo. (27)

For|g|<qo, B|qg|P<A,|q|: is always satisfied, and we will
neglect termB|q|? in the following calculation except in the

expressiorgo(q) —g1(q).
In case B(evaporation-condensation, step-edge diffusion,

do(ad)~A,lq|”2, gi(q)=0 for

cusses physical cases, but may be skipped by those unintéit terrace diffusion with an infinite Schwoebel baryjer

ested in a detailed analysis.

Ill. ANALYSIS OF VARIOUS TIME REGIMES

Taking the continuum limit of thep sum gives(p. 376-

9.6.19 of Ref[20]),

Cosq Xxe gO(Q)t

2 ———— 1 (gy(V), (25

E 40

CK(X,t) =

go(@)=Aqla|”t, gi(q)=0 for [q|<qo,

go(@)=~Azlal?2, g4(q)=0 for [g|>q,. (28

The details of the system of interd$érrace width, ener-
gies, diffusion constants, elare primarily contained in the
prefactorsA, ,, the crossover wave numbey,, and the
lower limit of g=2=/L. The exponentsy, , take on quite
universal values depending on the mass transport mecha-
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nism. Nevertheless we now do a complete asymptotic analy- Q (AHY7

sis without knowing these details, and then use those results ~ Cy.y(x,t)= —=———

in Sec. IV. In Sec. IV we also compare these asymptotic s N

results with direct numerical evaluations of E@4) for 1y,

physically interesting cases. eycc)E{)((L) ) ()

There are three important asymptotic time regimes in the % fw Aqt

step dynamics(i) early timest—0, (ii) intermediate times 0 yltim

0<t<7g, and(iii) very long timest> 7. Here, the charac-

teristic time For smallx, the cosine tends to unity, and the integral may
be written in terms ofy functions (p. 486-11.4.13 of Ref.

dy. (34

ro= (LI2m) /A, (29 (20D
1 1 1

1 _rlze =
is the decay time of slowest mode in the system. We present 2 ylr( K Vl)r( 2 i 71 1
the asymptotic forms foiC,_.o(x,t) and G(x,t) in these CrroX)==—5 (Agt)™7,
three regimes, though frequently) is the most experimen- s yiI'| k+ —+1
tally accessible one. 71

x—0. (35

A. Correlations between different steps —Cy . o(X,t)
(only case A (ii ) Long time limit & 7. We may then use the large argu-

Starting from zero at=0, the correlation between steps ment expansion for the Bessel functigm 377-9.7.1 of Ref.

Cy=o(X,t) grows due to correlated mass transport betweergzo])
steps. Neither step-edge diffusion, evaporation-condensation,
nor terrace diffusion with an infinite Schwoebel barriease

B) produce this correlation, 96,.¢(X,t)=0 in these cases.
Considering case fAEQ. (27)], sum(25) ceases to contribute

for g>qo, due to the fact that the Bessel functibn.o(0)  Now the small correctioB|q|” is the only term that survives

z

I (2)~ (36)

(27TZ)1/2.

=0. We then havécombining Eqs(25) and (27)] in Eq. (25). The first term in the sum is dominant; thus, for
, smallx,
ey 22 s cosax A, (30
ko)== a<do q? A 50 C(x t)%&(i)ﬁmﬂ “0. (37
==l 27 (A Y2 L

(i) Short times + 0. At short times, we expand the Bessel o . o L
function for small argumentp. 375-9.6.7 of Ref[20]) A surprising feature of this expression is that it is indepen-
’ dent ofk, indicating that asymptotically all of the steps are

. correlated in the same way. It is also valid for=0, i.e.,
| _[Z i 0 31) correlations on the same and different steps decay at long
KD=13) i 220 times in the same manner.

B. Correlations on the same step —G(X,t)
(both cases A and B

We considefcombining Eqs(3) and (25)]

and set the exponential to 1, which yields

20 cosgx (A;q”t)K

C X)) =—
o)== q<2qo 2k

(32

1—cosqx e %@ 4(gy(q)t)

7 (38

20
G(x,t)= = %

This is valid provideq<ll(A1qgl). Turning the sum into an First, we analyze this equation for smallwhen the cosine
integral and evaluating shows that at smaWe have tends to unity for three time regimes.
(i) Short times ++0. At short times, usind(0)=1 and

ky—1 go(a) =A1q”* for q<<do, go(a) =Aq”2 for q>qo, and ex-

k
Crro(X,t)==— %—(E> ,  Qgox—0. (33  panding the exponential in E¢38) to the second order, we
s7 Kl(kyi—=1)\ 2 find
ry1—1 —1_ 7271
(i) Intermediate time®<t< 7. In this regime, sung25) G(x—»Ot)zg A o ‘A (2mlay)”2 do ¢
is dominated by smalf, so we can take the upper limit to. s Ty 1 yo—1
However, all values of] contribute, so we can take the con- (39

tinuum limit and, rewriting in terms of more convenient vari-
ables, we then find for both the cases A and B.
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(i) Intermediate timed<t<rs. This regime actually V. RESULTS FOR THREE RELAXATION MECHANISMS

breaks up into two regimes. The first@ <y, is dominated First we confirm that our formalism reproduces the known

by the modes in the regimg=go, while the secondt, <t results for the cases of evaporation-condensation and step-

<7, Is dominated by modes in the reginge<qo. These edge diffusion, as these cases are quite simple within the

reg|;ne;rs1 tar:e qutendlr?;lnlctltdiuetgonthe iftact thggdonly ?p;im context of the formalism we have set up in Secs. Il and Ill.
pears € exponential. 1t 1S then quite a good approXimas, majority of this section is devoted to mass transport by
tion to treat the first time regime usimy,q”2, and the later

. . i R terrace diffusion, which can produce dynamical correlations
time regime usingA;q”1. We do an analysis similar to that P y

. , between neighboring steps.
leading to Eq/(34) to find Where possible, we compare with prior work, and in do-

ing so, we note that there are three different correlation func-
tions used in the literature. In addition®(0,t) as defined in
Eqg. (1), we have

wA(t)=(h(0)?)=G(0,2),

Q 1
G(x—0t)==—T|1— —|(At)Y72, t<t,, (40
ST Y2

for both cases A and B, and
((h(0,t)—h(0,0)?)=2G(0}). (45)

1- i)(Alt)l’“/l, t>t,, (41)  w?(t) describes how the fluctuations of a step grow with
71 time, assuming that the step is initially straight. It is thus a
nonequilibrium correlation function. However, within the
where C= (2Y71y,T'(1/2+ 1/y,))/ (7T (1/y;)) (integration linear approximation, it is easy to show that?(t)
by parts using p. 486-11.4.13 of R¢R0]) for case A, and =G(0,2), so that the nonequilibrium and equilibrium cor-
C=1 [p. 333-3.4341) of Ref.[21]] for case B. The cross- relations are proportional. However, much of the prior analy-
over timet, is found by equating Eqg40) and (41), and  sis has been for the relaxation timg,, which does not
solving for the time. In the physical cases, there may beequire the rather tedious inverse Fourier transforms leading
several different crossovers in this intermediate time regimeto Eq. (24) or the detailed analysis of Sec. Ill. However,
but the same general principles can be applied. Naturally thisomparison with many of the STM and REM experiments
complexity makes experimental data difficult to analyze indoes require the time-dependent correlation functions.
general.
(iii) Long times t 7. We first findCy(x—0,t) for long A. Evaporation-condensation
times. In case A, it is given by Eq37). In case B, the
argument of the Bessel function in E&5) is zero. We then
havely(0)=1, and, since the first term in the sum is domi-
nant,

Q
G(x—0t)=C=—T
ST

In this case, there is transport of mass from the surface to
the vapor, and from the vapor back to the surface. There is
no direct mass transport between adjacent steps. Thus we
model this case by a uniform diffusion kernel to the same

0 5 step and zero diffusion kernel between adjacent steps,
L
Co(x—>0,t)~—~(—) e s, (42

Ls \2m po(|)=%, P.(1)=0. (46)

whose time scale is set by the slowest mode in the syste

Mnother way to treat evaporation-condensation would be b
7. Then, using Eq(3), y P Y

using Po(l)=P4(l)=1/(2L), which gives the same relax-
ation time as Eq946). The characteristic timey, is the time
between atomic detachment events from a step edge into the
vapor. In the simplest case we would expect an activated
behaviorr, '=72d= v exp(—Egc/kgT), wherev is a char-
acteristic phonon frequency arikc is an evaporation en-
ergy. However, this simplified theory remains valid even if
many different processdand barriersplay a role, provided
they can be treated as independent. Equdtidihthen yields

G(x—0}) L Co(x—0,t) (43
X—0t)= —= —Co(x—0}).

155 °
For largerx we find, combining Eqs(3) and (26),

G(x#0¢t QX(l X) (44)
X == - T
(x#0p="<|1-¢

sa,
9o()=——0% 9:1(q)=0 (47)
for short times. On the other hand, we fir@(x+ 0) ° TEC !

=G(0,t) for longer times. Thereforez(x#0.t) is initially .

constant in time until the correlation length along the stepfor a!l values ofg. Thus th's_'s the case EEq. (28)] of Sec.
increases approximately to a valkelf Aq” is the dominant Il without crossoverqo, with Ay=A;=sa, /7ec and vy,
regime, we find that Eq44) is valid for t<x/A. This time = ¥2=2. In the intermediate time reginj&qgs.(40) or (41)],
depends on the kind of dynamics throughand A, and de- We have

fines the propagation speed of the quctuBtions. As expected, 12

the initial fluctuation(44) depends omx ands, but not on the G(O,t)zQ( ai) (_) _ (48)

kind of dynamics, i.e.;y andA. 77_3 TEC
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This result is essentially the same as that of Baee#l.[8].  terrace above the step edge with probabifity. It then dif-
fuses on the terrace until it reattaches to the same step edge
B. Step-edge diffusion or one of the adjacent step edges. We detipeto be the
We restrict diffusion to nearest neighbors along the steﬁt'Cklng coefficient of an atom which appr.oa_ches a S_te_p edge
- from the lower terrace, and to be the sticking coefficient
edge by defining,
on approach to the step edge from the upper terrace. We
Po(l)=3{5( —a))+d(l+a)}, Py(1)=0. (49  assume simple behavior wheEsp is the binding energy,
o ) ] _andE, andE are the energy barriers that an atom has to
The characteristic timey, is now the time between atomic \ercome to move to the lower or upper terraces, respec-

hopping events between nearest neighbors. We assumeti@ely. E, andEy are also energy barriers that an atom has to

. . . _1_ a
simple activated ~ behavior 7, "= v exp(~Ese/KeT){€XP  oyercome to stick to the step edge on its approach from the
(—Ei/keT)+exp(—E, /kgT)}, wherev is a characteristic pho- e and upper terrace, respectivel, is the “Schwoebel

non frequency, anése the step-edge binding energy, while o » |y terms of these energies, the detachment proba-
E, andE, are the additional activation barriers that an atombiIiteS pu andp, are the probabilities of detaching
U L

has to overcome to move to the left or right, respectively. In
the simplest symmetric casg =E,=0; thus 7, *=27g2

e e
—1_ _ ; _ _
wherergg = v exp(—Egg/kgT). Using Eq.(14) then leads to pL_e_EL/kBT+e_EU kg™ pu_e—EL/ksT+e—Eu kT

—EL /kgT —Ey /kgT

Zsa, (52)
gol() = qu{l—cosqew}, g1(a)=0. (50
An expansion ofj,(q) at smallq yields a behavior like that and the sticking coefficientsee the Appendjx
of case B, withA;=5a, af/ 7sg, y;=4, andgo=1/a,. Re-
gion |g|>qg is very small, and has a negligible influence on CE T kT
correlation functions. Thus, in the intermediate time regime e e e TuTe
we find [using Eq.(41)] b (1—e ElkeT)g, aU_(l—e_EU/kBT)al '
1 (53

(5D
TSE

1 /3 Q5a” 4
G(O,t)=;l“ 2 =

t )1/4

The sticking coefficients can have any value in the range
[000), where O corresponds to no sticking ando perfect
sticking.
Since atoms diffuse on the terradey(l) and P4(l) are
the probabilities for a random walk on the surface between
In the terrace diffusion model, an atom detaches onto théwo fluctuating semisticking walls. The calculation of these
terrace below the step edge with probabifity, and onto the  probabilities for straight step edges is done in the Appendix:

This agrees with Bartekt al. [8].

C. Terrace diffusion

PO('):pUP(aU YL !dld_al !I)+pLP(aL y Ay !dvd_ai !I) (54)
and
Pl(l)ZpUP(aL y Yy ,d,ai ,|)+p|_P(aU YO ,d,ai ,l), (55)

where

1 [+ a4 (k coshkb+ a, sinhkb)
P(aj,a,,d,b,l)= 2—[ skl. (56)

c
m) - (k®+ aya,)sinhkd+k(ay+ a )coshkd

These results for two straight edges can be used as the diffusion kernels mediating the dynamics of fluctuation provided the
fluctuations are relatively wealthe small slope limit Integrals(14) may be evaluated to find

sa
gola) = T—:qz{l— Pug(ay,a.,d,d=a,,q)—p.g(aL,ay,d,d-a,,q)} (57)

and

sa
g:1(q)= T—:qz{pLg(au yap,d,a,,q)+pyg(ae,ay,d,a, ,q)}, (58
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where

a4(q coshgb+ a, sinhgb) 59

y 1d1b1 = '
g(ay,az Q) (9%+ ayay)sinhqd+q( ay + a, )coshqd

Here the characteristic time is related to step edge energigke four different cases of the sticking coefficients illustrated
by in Fig. 2. Each case has a different time scaling. We also
1B T kT show the small time plateau iG(x,t) which exists at finite
T, =Trpi€ LB +e tuTel} (60 x[see Eq(44)]. C,(0y) is plotted only for the perfect stick-

_1 ) ... ing case for a couple of nonzero valueskofOther cases,
where 7rp=v exp(-Erp/kgT), and v is a characteristic i nonzero sticking coefficients, show the same scaling.
phonon frequency. , . These numerical results are compared to the approximate

.In Fig. 2, we plot the'spectrum of inverse relaxation t'mesanalytical forms of Tables I-Il{see belowwhich are plot-
using Eqs.(57) and(58) in Eq. (17) for four d|fferent_<:2ases: ted as dashed lines in Figs. 3 and 4. Those analytical forms,
a =ay=10"a, (perfect sticking, a =ay=10%a, jisted in Tables | and Il, are obtained by substituting expres-
(weak sticking, « =10a, and ay=10"%a, (finite  sjons for relaxation times derived below into E¢#0), (41),
Schwoebel barrie, <E), and o, =10%a, and ay=0  (33), and(35). We also plotd? as a horizontal dash-dotted
(infinite Schwoebel barrieE;— ). Note in Fig. 2 that, ex- line to show when the step fluctuation width exceeds the
cept in the infinite Schwoebel barrier case when there in n@listance between the steps. Since our model does not include
atom exchange between the steps, the spectrum of relaxatigie direct step-step interaction, it fails above i line.
times is spread betweeyt andqg? for small values of). This ~ Now we derive the limiting forms for the correlation func-
leads to the step-step correlation @y(x,t). On the other tions G(0t) andC,(0yt).
hand, the spectrum shrinks to one valtieat scales ag? in In the limit g<1/a;, expressiong57)—(59) reduce to
weak sticking case, argf in perfect sticking and Schwoebel
barrier casgfor larger values ofy. In this limit, there is no N
step-step correlation. Using the spectrum of inverse relax-9o(d) = T—|Q|3
ation times, plotted in Fig. 2, and doing numerical summa- ™
tions overg andp, G(x,t) andC,(0,t), defined by Eqs(3)
and (24), are plotted in Figs. 3 and 4(x,t) is plotted for  gnd

'sa’ 2aya coshqd+ (ay+ «)qsinhqd

(02+ ayay)sinhqd+ q( ey + « )coshqd
(61)

10" . ; . ; 252
saf

ZaUaL

7o (g%+ ayay)sinhqd+q(ay+ e, )coshqd

10° 1 (62)
These expressions then lead to the relaxation time of a mode

10° | ] of (p,q) according tOTqu1=go(q)—gl(q)cosp. Approxi-
mate expressions for this relaxation time were found by

Pimpinelli et al. [9] in a variety of limiting cases, though
they implicitly assumed “in phase motion.” Khare and Ein-
stein[16] considered in phase and out of phase mofidg
+2By=9o(0) £g1(a)]. In finding the time-dependent cor-
relations, we need the full spectruall values ofp). lhle,
Misbah, and Pierre-LouiglL3] also considered the full spec-
" , ‘ . trum, and we reproduce their results for the cases they con-
sider[they only considere®&(0,t) ]. We now discuss limiting
cases in which the time dependent correlations may be ex-
FIG. 2. Inverse relaxation times 4, in the terrace diffusion  plicitly evaluated.
case for a surface witN =10 stepgdue to degeneracy, a maximum T1 — Terrace diffusion 1(d—=). The larged limit
of six distinct modes occlird=30a, andL=10%. We use dif- eliminates the flux from neighboring steps, so the steps act
ferent ratiosgal/aﬁ for each spectrum to avoid overlapping the independently. In this “isolated step” limit, Eq$61) and
spectra. They are plotted for the following sticking coefficients (62) reduce to
(from the top: a =ay=10%a, andsa, /af=10% a =ay 5
=10%a, and sa, /af=10% a;=10%a,, a,=10 %a,, and _ sa? 3 u ap _
%a. ja?— 10 ande! —10a. - o —0. anda. Ja?— : go(a)=——1dq| + » 91(q)=0.
| /af=10; andey =10%a, , a;,=0, andsa, /af=1. Except in D ay+lql a.+]|q]
the infinite Schwoebel barrier cageottom line, the spectrum of (63
relaxation times is spread betweghandq? for small values ofj.
On the other hand, the spectrum shrinks to one véhet scales as ~ Since g;(q) =0, qul: go(q) and Cy.o(x,t)=0 (case B.
g? for the top line, andj® for the other linesfor larger values ofy. From Eg.(63) it is seen that even isolated steps can have

10 L

qd
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L L
12 14

10° 10" 10 10

7D

10° 10° 10 10° 10° 10" 10" 10 10
t/ty, t/t

FIG. 3. The autocorrelation function in the case of terrace diffusion10,L = 105a‘| , d=100a,, andkBTli =1. Solid lines are E(3),
found from numerical summation of EQ4) with Egs. (57)—(60). Dashed lines are the equations listed in Table ¥{€& 7.), and the
horizontal dash-dotted line &. The noninteracting approximation we use here is only valid when the correlations are led$. thae data
are for sticking coefficientsa) | = ay, =10 %/a, (caseT3), andx=0,x=>5, andx=500 from the bottom(b) a| = a,=10%a, (caseT3),
andx=0, 10, and 100Gfrom the botton; (c) a, =10°/a, and ay=10 3%a, (caseT3), andx=0, 10, and 100@from the bottor; (d)
a =10%a, , anday=0 (caseT2), andx=0, 10, and 100@from the bottom.

three possible regimes: whehg|>ay , then go(q)  coefficients do not play a role. This regime is not well de-

~ 9 . fined if ay~0 or o =0. Finally, at long enough times, the
.:Sai(aU.Jr.aL)qZ/TTD (the g* 'dependenfte for small stick- relaxatiorl1J is contr(;lled by theyslowes'?modegin the system.
ing coefficients was noted in Ref10]); when ay<|d|  Note that these forms apply, at sufficiently short time, even
<ay (assumingay<a,), thengo(q)=sa’|q|® 7rp, and  for quite closely spaced steps in a step train, as discussed
when |g|<ay , then go(q)=2sa%|q|*/rrp (the last ex- below. o N
pression was derived befof0]). Three different regimes T2 — Terrace diffusion 2(d finite, ay=0 or a; =0).
lead to three different intermediate time regimes in the corS€ttingay=0 or «; =0 implies that no mass is transported
relation functionG(0t) as summarized in Table [using ToM one step to either of its neighborSlarge barrier
Egs. (38)—(43)]. After the noninteracting diffuser reginte limit,” e.g., the _Iarge Schwoebgl barngr correspondsatp
—0, there is an early time@t«t{l (large q dominan}, in =0). At short time(large g dominany, isolated terrace be-

which short range processes must overcome the sticking C(51_avior occurs, especially for well separated steps. For small
efficients in order to proceed. For this reaseq,+ a, ap- 9. Egs.(61) and (62) reduce to

pears as a prefactor. This regime is not well defined if 3da2

ay  —. In the regimet] ' <t<t,', one of the terraceghe Jo(q)= ——q* g1(q)=0; (64)
upper one for the case, <«,) does not contribute, since 7D

the approach to the step edge from that terrace has suchtus C,_ ,(x,t)=0 (case B. The q* dependence leads to a
small StiCking coefficient. This regime is Only well defined if |Ong time behavior like that of Step_edge diffusion, as seen
the two sticking coefficients are very differefetg., the large by comparing the correlation functions for this case with that
Schwoebel barrier case, when,<a,). In the regimet;*  of step edge diffusiofsee Table)l The results in Table | are
<t< 7-11, both terraces contribute equally and small stickingfound using Eqs(41), (43), and(64).
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10° \ \ \ \ \ \ \ \ T3 — Terrace diffusion 3d finite, ay | #0). In this case
the T1 (isolated stepprocesses occur at short timgargeq
dominanj. For analysis of the long time behavi@mall q
dominany, it is useful to define the length

au+a|_

(65

ayag

If dg is finite (dy— leads to theT2 limit), mass transport
between steps is dominant. The approximate forms of Egs.
(61) and(62) for this case are

C{01)/ C40,0)

‘sa? 2sa’

_ 2
, o gu(a)= TTD(d+d0)q ,
(66)

do(q) = q?+dq*

d+d,

7D

L
1

10

10° 10° 10"
t/ Ty,

FIG. 4. The step-step correlation function in the terrace diffu-dué to the mass transport occurring between styfs)
sion (T3) limit. For N=10, L=1Ca;, d=30a ksT/S =1, and #0, and this is the mathematical origin of a finite value of
. = y L= , U= ) =4, e . . .
o =ay=10%a, . Solid lines are the results of numerical summa- Cixo(X,1). Results for this limit are summarlzed _'n Tablgs I
tion of Eq. (24) using Egs.(57)—(60). Dashed lines are the equa- and Il, where we have useg~2/d from Fig. 2. This case is

tions listed in Table Il {<75), and the horizontal dash-dotted line is Probably very important as experimental systems usually sat-
d2. The noninteracting approximation we use here is only validisfy d<<L, so that the diffusion kernels are then affected by

when the correlations are less thdh We considered steps sepa- adjacent steps. This leads to a correlation between step fluc-
rated from each other bly=1, 2, and 3(from the top intervening  tuations on neighboring steps which becomes the "signa-
steps. The inset is a linear-log plot that shows the exponential timéure” of the T3 process. The autocorrelation functi@iiO,t)
dependence at long times.

10‘16

TABLE lll. Equations for limiting time scales.

Characteristic time Physical origin

Evaporation-condensatiqiiC)

eFec/ksT Time related to the binding energ¥£c) at the step edge
TeEC™ ”
cc_ TeC L)Z Slowest mode
S 27
sa,
Step-edge diffusioiSE)
eEse/keT Time related to the binding energ¥§y) at the step edge
TSE™ "
e T L)4 Slowest mode
sa,af \ 2m
Terrace diffusionTD)
eEto/kgT Time related to the binding energ¥{p) at the step edge
Ly
- L3 Slowest mode: terrace diffusioFl (isolated step limjt
T1_ TD —
°® 2Jsa? 277)
- L\4 Slowest mode: terrace diffusiof2 (large barrier limig
T2__"T0 [ =
° dsa? (277)
5 mo(d+dg) [ L 2 Slowest mode: terrace diffusion3 (step to step limit
ST R 2w
1
t1, 6t Crossover times for isolated step limif1)
t;? Crossover time for large barrier limiffQ)

t° Crossover time for step to step limiT8)
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(Table_l) can ha\_/e a wide_ variety of different behaviors. But p.(h=a, e E1/kaTP(], —a+a,),

the pair correlation function only measures th@ process,

as it depends on having a finitg(q) corresponding to cor-

related mass transfer between steps. This makes the pair cor- ~

relation function a useful diagnostic of the dominant surface py(l)=a,e F2/*eTP(l,d~a~a,). (A1)
transport modes.

P(x,y) must satisfy the Poisson equation
V. CONCLUSIONS

We have shown that the pair correlation function between 2% __
two different stepsCy.o(X,t), can differentiate between ter- VEP(y) Fox)o(y). (A2)

race diffusion and other surface transport processes, as it js

identically zero for the cases of evaporation-condensatiorlg add't'on’d't hasTtho satisfy c(j:_e_rtaln bounbdarc)j/ C_OngltIOh; ar:
and step-edge diffusion. In contra&l.(x,t) is finite and € Step edges. These conditions can be derived with the

quite large in the case of terrace diffusion. Sir@€0y) is following simple reasoning. Since the probability that an

affected byall mass transport mechanismseasurement of atom, sitting on the S'te)_((__Ea,—kF?i)’ will stick to site (x,
G(0t) and Cy.((0;t) makes it possible to determine the _—a). on the _step edge 1 & =17 ,_then EhEe ,E“T)bab'“ty that
relative importance of terrace diffusion to the other types oft Will not stick and bounce back is-1e~="". Thus, ef-
mass transport in surface dynamics. The limiting results fofectively, P(x,—a)=(1-e Ft/eT)P(x,—a+ a,) (see p.
Ckz0(0t) and G(0,t) are summarized in Tables I-Ill, and 168 of Ref.[22]). Using that and the fact tha®(x,—a
the general results are in Eq80) and (38). We have also 1 3 )—P(x,—a)—a, JP(x,—a)/dy for a, »0, we obtain
calculated the behavior @&(x,t) for various values ok [see
Figs. 3a—3(c)]. An experiment in which botlG(x,t) and
Cy=o(x,t) are measured, in combination with a theory like
that here, should provide definitive information about the
surface mass transport mechanisms. ady

The analysis here takes a different perspective than that
used by previous authors. In particular, we defined a Langewhere notationa;=e F1/*8T/(1—e F1/keT)a, . Similarly,
vin equation in real space, with “diffusion kernels” repre- on the other step edge,
senting the mass transport processee Eq.(6)]. We find
this real space picture physically appealing and complemen-
tary to the conventional metho%3,16.

m=aﬂ5(x,—a), (A3)

IP(x,d—a)

Y =—a,P(x,d—a), (A4)
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APPENDIX: DERIVATION OF P FOR THE TERRACE
DIFFUSION CASE

L/2

Consider two straight parallel steps 1 and 2 at a distance 2[ (p(D)+pa(l))di=1 (A5)
from each other. The terrace between the steps is a discrete 0
square lattice defined by andy axes that are parallel and ) L
perpendicular to the steps, repectively. The originy] o findF=a, =, andp,(l) andp,(l) as
=(0,0) is located at distan@efrom the right of step 1 and at
distanced —a from the left of step 2. The energy barriers an
atom has to overcome to stick to step 1 or step 2 on approachp,(I)=P(a;,a5,d,d—a,l), po(l)=P(ay,a;,d,a,l)
from the terrace arde; and E,, respectively. Let us call (A6)
p1(l) and p,(l) the probabilities that an atom will be ab-

Zorfr?go?nkvzvélle);rghrﬁ tsrtlipoiigczgz’ respectively, after starting where the functiorP is written in Eq.(56). Instead of Eq.

In order to find those probabilities, we can assume thagAl)' VXe could also use another interesting relationship be-
there is a source of atoms, with magnitudeat the origin.  tweenP(x,y) andp,(l) andp,(l) (after manipulation with
After emerging from the source, an atom does a randor@bove equations
walk on the terrace until it sticks at a step edge. We define a
steady state probability density fun(ition for the distribution ) P(x,y=—a) 5 P(x,y=d—a)
of the walking atoms on the terrade(x,y). By knowing pl(l):a’LTlpZ(l): AT
P(x,y), pi(l) andp,(l) can be found from (A7)
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